
Software Architect

How are they different than Software Developers?
Why become one?

Ron Kleinman 2016

CNN / Money
(Best Jobs in America 2015)

#1 Software Architect

• Median pay: $124,000 / Top pay: $169,000
• 10-year job growth: 23%

• In the same way an architect designs a house, software
architects lay out a design plan for new programs. That
usually means leading a team of developers and engineers, and
making sure all the pieces come together to make fully-
functioning software.

• What's great: New problems come up all the time and new
technologies arise, making each day different, and keeping
professionals in demand.

http://money.cnn.com/gallery/pf/2015/01/27/best-jobs-2015/

http://money.cnn.com/gallery/pf/2015/01/27/best-jobs-2015/

Software Architect
(Wikipedia Definition)

A software architect is a software expert who makes high-level design choices

and dictates technical standards, including software coding standards, tools,

and platforms. The main responsibilities include:

• Limit choices available during development by:

» choosing a standard way of pursuing application development

» creating, defining, or choosing an application framework

• Recognize potential reuse in the application by:

» observing and understanding the broader system environment

» creating the component design

» having knowledge of other applications in the organization

• Subdivide a complex application, during the design phase, into

smaller, more manageable pieces

• Grasp Define the functions of each component within the application

• Understand the interactions and dependencies among components

• Communicate these concepts to developers

Building a New Home

Building a New Software Application

Customer Planning Physical Physical

Buyer Architect General Skilled

Domain Software Software Software

Expert Architect Architect/Designer Developer/Programmer

Documents System Decisions Installation

(Blueprints) Contractor Worker

(UML Artifacts) (Data Store, Security) (Code)

(Piping, Wiring) (Plumber, Electrician)

Building Phases

But what does a Software Architect
actually DO when developing a new

software application?

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

 Requires direct interaction with the “Domain Expert” to identify

and document the problem (requirements & constraints) that must

be solved by the new system.

FS: Enrollment System at De Anza College
De Anza courses are offered by its departments (Ex: CIS) and available Quarterly (Ex:
Fall and Winter). Each course has an identifying number (ex: 28), a Name (Ex: Object
Oriented Analysis and Design), a description, a number of credits and an optional set
of required prerequisites.

Each course is assigned a set of times during the week when it meets. It is also
assigned a teacher who is both qualified and willing to teach that course, and who is
free during the assigned times the course meets. It is also assigned a room, which also
must be free during those times.

Students may then attempt to enroll in a course if they are paid up, have taken all its
required prerequisites, are not already enrolled in the course, and if they are not
already taking another course which overlaps the assigned times for this one.

Depending upon the size of the course and the number of students already enrolled,
the student’s enrollment request may either be accepted, or the student may be wait
listed, or the request may be denied. If the student is accepted, her attendance will be
tracked and at the end of the academic quarter she will receive a final grade.

You must produce a working solution. Where do you begin?

WRONG!!!

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

 What are the words in the FS which must be further refined to

determine exactly what the proposed system is actually required

to do?

FS: Enrollment System at De Anza College
De Anza College Courses are offered by its Departments (Ex: CIS) and offered
Quarterly (Ex: Fall and Winter). Each course has an identifying number (ex: 28), a
Name (Ex: Object Oriented Analysis and Design), a description, a number of credits
and an optional set of required Prerequisites.

Each course is assigned a set of times during the week when it meets. It is also
assigned a Teacher who is both qualified and willing to teach that course, and who is
free during the assigned times the course meets. It is also assigned a Room, which
also must be free during those times.

Students may then attempt to enroll in a course if they are paid up, have taken all its
required prerequisites, are not already enrolled in the course, and if they are not
already taking another course which overlaps the assigned times for this one.

Depending upon the size of the course and the number of students already enrolled,
the student’s enrollment request may either be accepted, or the student may be wait
listed, or the request may be denied. If the student is accepted, her attendance will be
tracked and at the end of the academic quarter she will receive a final grade for the
course.

You must produce a working solution. Where do you begin?

Basic Abstractions in Enrollment System

College

Dept

Course

Student

Room

Teacher

PreReq

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

– Course might be taught in several rooms

– Course might be taught by several teachers

• Can a Student “enroll” in a Course?

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

– Course might be taught in several rooms

– Course might be taught by several teachers

• Can a Student “enroll” in a Course?

– No. Need a new abstraction

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

– Course might be taught in several rooms

– Course might be taught by several teachers

• Can a Student “enroll” in a Course?

– No. Need a new abstraction: Section

– Section has Room, Teacher, Students, Hours to meet

– Course has description, Name, # Credits, textbook, …

• What exactly is a ”Prerequisite”?

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

– Course might be taught in several rooms

– Course might be taught by several teachers

• Can a Student “enroll” in a Course?
– No. Need a new abstraction: Section

– Section has Room, Teacher, Students, Hours to meet

– Course has description, Name, # Credits, textbook, …

• What exactly is a ”Prerequisite”?
– A Prerequisite is a Course

• How do Teachers, Rooms, Students, detect
scheduling conflicts?

Refining the Abstractions
• Can a Room / Teacher be assigned to a Course?

– Course might be taught in several rooms

– Course might be taught by several teachers

• Can a Student “enroll” in a Course?
– No. Need a new abstraction: Section

– Section has Room, Teacher, Students, Hours to meet

– Course has description, Name, # Credits, textbook, …

• What exactly is a ”Prerequisite”?
– A Prerequisite is a Course

• How do Teachers, Rooms, Students, detect
scheduling conflicts?
– They are each assigned their own Schedule

Basic Abstractions in Enrollment System

College Dept

CourseStudent Room

Teacher

PreReq

Refined Abstractions in Enrollment System

College Dept

CourseStudent Room

Teacher

Schedule Section

Language Year Construct Components Advance

Basic 1965 Program Code, Global

Data variables

Higher level

Language

Fortran 1970 Subroutine Independent

Code & “local”

Data variables

Reusable

Code Modules

C 1975 Struct Abstraction as

collection of

Data Types

Treat Data

Types as new

“entity” (ex:

“Student”)

C++ 1985 Object Data Type

Collection +

Associated

Functions

“Encapsulate”

Data Types &

the code that

uses them

Client

I
N
T
E
R
F
A
C
E

Implementation
(Data & Code)

Connection

Object Service

Key OO Concept: Encapsulation

float cum;

float getCum () { return (cum); }

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions

– (Often involves selecting & incorporating “Design

Patterns” into the architecture)

– http://www.uml.org.cn/c++/pdf/DesignPatterns.pdf

http://www.uml.org.cn/c++/pdf/DesignPatterns.pdf

Conceptual Class Diagram:
Schedule of Classes

College Dept
(CIS)

Course
(CIS 28)

1 N 1 N

N 1

Section
(CIS 28 061)

Room
Teacher

1

N

1

N

1 N

1 N

S

S

S

Has Offers

Instantiates

Prereqs

Locates

Instructs

Owns
Employs

Conceptual Class Diagram: Enrollment

Student
Section
(CIS 28 061)

S
S

N N

N:N Relationship

How do we implement this?

Conceptual Class Diagram: Enrollment

Student
Section
(CIS 28 061)

S
S

N N

N:N Relationship:

Student has array

of Section Refs

Section has array

of Student Refs

Conceptual Class Diagram: Enrollment

Student
Section
(CIS 28 061)

S
S

N N

N:N Relationship has its own Data!

Final Grade

Attendance Records

Exam Grades

Teacher’s Comments

Student has array

of Section Refs

Section has array

of Student Refs

Conceptual Class Diagram: Enrollment

Student
Section
(CIS 28 061)

SS

1 N

Design Pattern: “Junction Class”

Student Reference

Section Reference

Final Grade

Attendance Records

Exam Grades

Teacher’s Comments

Thing? N 1

Student has array

of Thing Refs

Section has array

of Thing Refs

Conceptual Class Diagram: Enrollment

Student
Section
(CIS 28 061)

SS

1 N

Student Reference

Section Reference

Final Grade

Attendance Records

Exam Grades

Teacher’s Comments

Seat N 1

Student has array

of Seat Refs

Section has array

of Seat Refs

Refined Abstractions in Enrollment System

College Dept

CourseStudent Room

Teacher

Schedule Section

Refined Abstractions in Enrollment System

College Dept

CourseStudent Room

Teacher

Schedule Section Seat

Other Possible Objects: Inheritance

Teacher

Part
Time

Full
Time

double Teacher::getSalary () {
switch (type) {

case PT:
code A

case FT:
code B

}}

Teacher
(Type = PT, FT)

double PartTime::getSalary ()
{

code A
}

double FullTime::getSalary ()
{

code B
}

class Teacher {
private:
public: virtual

double getSalary () }

Criteria:

of known Types

of methods affected

of “unknown” Types

Parent & Child Classes

Teacher

Part
Time

Full
Time

Guest
Lecturer

Lab
Instructor

Virtual Functions:

get Office Hours, Salary, ID, …

assignSection, compensate, …

No code changes to add “Contractor”!!

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out abstractions with “attributes”  Class

 What are the specific data elements that comprise

any given object of this class (and are not found in any

other class)?

Ex: What exactly is a “Room”?

“Room” Attributes
• class Room

• { private: // Private Data

• Schedule sched; // Schedule of Room usage (1:1)

• Location *location; // Building or offsite facility (n:1) – De Anza AT

• int num; // Room Number

• Department *dept; // Owning Department (n:1) - CIS

• int capacity; // Max # of students in the room

• EquipmentList equips; // List of Equipment in Room (1:n)

• public: // Public Functions …

• }

struct Equipment

{ // This will be used only within Room,

enum type { OverheadProjector, Whiteboard, Computer, Dais, InternetAccess };

int amount; // Number of units of equipment;

}

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out each abstraction with “attributes”  Class

• Define the “behavior” of all stateful classes

Object Behavior

Event

Object “Behavior” in response to a given Event (method

invocation) is often dependent upon previous Events, and what

“State” they have placed the object into.

• “Add Student” Event for a Section whose “state” is:

• Open

• Full

• Closed

• Cancelled

State

A

State

B

State / Event Diagram Components

Transient
State

Steady State
Event [Condition] / Action

Start

End

Section Behavior (Partial)

Open Full Closed

Enrollment
Period Ends /
Free Waitlisted
Students

Evaluate
Active

Enrollment
Period Ends /
Free Waitlisted
Students

Enrollment
Period Ends

Dropped

[size >= 20]

[size < 20]/ Free Teacher,
Room & each Enrolled Student

Archived

End of Term /
Enter Grades

expunge

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out each abstraction with “attributes”  Class

• Define the “behavior” of all stateful classes

OOD:

• Document “Use Cases” from the Functional

Specification utilizing the set of defined classes

FS: Enrollment System at De Anza College
De Anza College Courses are offered by its Departments (Ex: CIS) and available
Quarterly (Ex: Fall and Winter). Each Course has an identifying number (ex: 28), a
Name (Ex: Object Oriented Analysis and Design), a description, a number of credits
and an optional set of required prerequisites.

Each offered course is “instantiated” by one or more “Sections”. Each Section is
assigned a Section number (ex: 061), and a Schedule of times during the week when it
meets. It is also assigned a Teacher who is both qualified and willing to teach that
course, and who has no Schedule conflicts with it. It is also assigned a Room, which
also must be free during those times the Section meets.

Students may then attempt to enroll in a Section if they are paid up, have taken all its
required prerequisites, are not currently enrolled in any Section of the course, and if
they are not already enrolled in another Section with a conflicting Schedule .

Depending upon the size of the Section and the number of Students already enrolled,
the Student’s enrollment request may either be accepted, or the Student may be wait
listed, or the request may be denied. If the Student is accepted, her attendance will
be tracked and at the end of the academic quarter she will receive a final grade for the
Section.

Use Cases:
What the Enrollment Application must do

• Create new Section Y (#, days-time) of Course C

• Assign Teacher T to Section Y

• Assign Room R to Section Y

• Enroll Student X in Section Y

• End of Enrollment Period (includes Section Drop)

• End of Term

Use Case: Student X Enrolls in Section Y

• Restrictions:

– Section Y must have open slots

– Student X must be paid up (tuition)

– Section Y’s Schedule must not conflict with the Schedule
of any other Sections that Student X is enrolled in

– Student X must have successfully completed all
prerequisite Courses

• Effects (on success):

– Seat Z is created which connects Student X and Section Y

– Section Y’s Schedule is “added” to Student X’s Schedule

Enroll Student
in Section

User Facing
Servlet
Thread O

B
J
E
C
T

A
P
I
S

Enrollment
Application

Service
Object
Library

(Implement
ations)

Tablet

Browser

User Facing
Servlet
Thread

User Facing
Servlet
Thread

User Facing
Servlet
Thread

Open (Internet) Protected (Data Center/Cloud)

Registrar
Desk

Smart
Phone

C
L
I
E
N
T

Enrollment
Application

Back End
Interface

(User ID, Password,
Student ID, Section ID)

Web

Server
Application

Server

(Enroll:
Student ID,
Section ID)

College::getStudent (ID)
College::getSection (ID)
Section::enroll (Student&)

Software Architect Responsibilities

• Read, understand and clarify Functional Specification

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out each abstraction with “attributes”  Class

• Define the “behavior” of all stateful classes

OOD:

• Document “Use Cases” from the FS utilizing the set of

defined classes

• “Solve” each Use Case via a Sequence Flow of

Process Orchestration among defined objects

UML Artifact

Process

Orchestration

Enroll Student X

in

Section Y

(Only Student ID and

Section # Strings are

known)

Software Architect Responsibilities

• Read, understand and clarify Functional Specification (FS)

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out each abstraction with “attributes”  Class

• Define the “behavior” of all stateful classes

OOD:

• Document “Use Cases” from the FS utilizing the set of
defined classes

• “Solve” each Use Case via a Sequence Flow of Process
Orchestration among defined objects

• Generate the responsibilities and collaborations
required of each Class (CRC Object Choreography)

Class Responsibility Collaboration (CRC)

• Choreography of what one class must do to support
ALL sequence flows mapping out ALL use case
process orchestrations.

• Defines all required Class public methods (the
complete object interface!) and dependencies on
other objects (how to implement them).

• Every Collaboration must be a Responsibility of
some other indicated Class

• Vital for conveying design results to object
developers / programmers

• The following is a partial Student CRC which covers
only responsibilities in “Enroll Student in Section”.

Class: Section

Responsibilities
• enroll (Student)

• isRoom ()

• Sched& getSched ()

• Course& getCourse ()

Collaborations
• Section::isRoom ()

• Student::canTake (Section&)

• Seat::new (Student, Section)

• Student::addSeat (Seat)

Class: Student

Responsibilities
• canTake(Section)

• meetReqs (Courses[])

• isPaidUp ()

• addSeat (Seat)

Collaborations
• Student:: isPaidUp ()

• Section::getSchedule ()

• Section::getCourse ()

• Schedule::isConflict (Schedule &)

• Student::meetRequirements (Courses[])

• -- (Checks if all Courses were taken)

• --

• Seat::getSection ()

• Section:getSched ()

• Schedule::add (Schedule &)

Software Architect Responsibilities
• Read, understand and clarify Functional Specification (FS)

OOA:

• Identify basic “abstractions” referenced in the FS

• Determine “relationship” between abstractions (N:1:N)

• Flesh out each abstraction with “attributes”  Class

• Define the “behavior” of all stateful classes

OOD:

• Document “Use Cases” from the FS utilizing the set of
defined classes

• “Solve” each Use Case via a Sequence Flow of Process
Orchestration among defined objects

• Generate the responsibilities and collaborations required
of each Class (CRC Choreography)

OOP:

• Bring in the Software Developers and Programmers

The Handoff

Software

Architect

Programmer

UML Artifacts

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

• List of attributes for each class

– Good start at defining private data elements

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

• List of attributes for each class

– Good start at defining private data elements

• State / Event Diagrams defining object “behavior”

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

• List of attributes for each class

– Good start at defining private data elements

• State / Event Diagrams defining object “behavior”

• Use Case description for every supported “process”

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

• List of attributes for each class

– Good start at defining private data elements

• State / Event Diagrams defining object “behavior”

• Use Case description for every supported “process”

• Sequence Flow Orchestration for each such process

Handing off to the Programmers
• Conceptual Class Diagram referencing clearly

defined “abstractions” mapping to C++/Java Classes

• List of attributes for each class

– Good start at defining private data elements

• State / Event Diagrams defining object “behavior”

• Use Case description for every supported “process”

• Sequence Flow Orchestration for each such process

• Class Responsibility / Collaboration Choreographies

– Responsibilities map 1:1 with required public methods

– Collaborations indicate object methods that need to be
invoked to implement these responsibilities

OO Phases

OOA
Abstraction
Classification

OOA
Behavior

OOD
Relationships

OOD / OOP
Physical
Mapping

OOP
Code / Test

Class Lists:
(1:N:1) Connections
Description
Attributes
Some “Methods”

Event / State
Diagrams

Sequence Flows
CRCs
.h templates

Security, Database &
Packaging Decisions

Functional
Specification

Use Cases
(Process)

So what’s left to do?
• The application architecture is completely defined.

– Exactly what each object must do to support use cases

So what’s left to do?
• The application architecture is completely defined.

– Exactly what each object must do to support use cases

• Next come the “Application Framework” decisions

– What API to access the Data Store (Oracle, Hadoop, SQL)?

– What OS will be used (Linux, Windows, X, …)?

– What Security strategy will be adopted

• Authentication, Authorization, Encryption?

– Distributed deployment (Data Center, Cloud)?

So what’s left to do?
• The application architecture is completely defined.

– Exactly what each object must do to support use cases

• Make the “Application Framework” decisions

– What API to access the Data Store (Oracle, Hadoop, SQL)?

– What OS will be used (Linux, Windows, X, …)?

– What Security strategy will be adopted

• Authentication, Authorization, Encryption?

– Distributed deployment (Data Center, Cloud)?

• Determine the “Packaging”

– Define relationship to other apps in the Organization

De Anza Software Applications

Emergency

Contact

College

Catalogue

Schedule of

Classes

Student

Enrollment

SIS

College,
Department,
Course

College, Department, Course,
Section, Teacher, Room, Schedule

Student,
Student Transcript

Room, Student Schedule,
Teacher Schedule

OO Phases

OOA
Abstraction
Classification

OOA
Behavior

OOD
Relationships

OOD / OOP
Physical
Mapping

OOP
Code / Test

Class Lists:
(1:N:1) Connections
Description
Attributes
Some “Methods”

Event / State
Diagrams

Sequence Flows
CRCs
.h templates

Security, Database &
Packaging Decisions

Functional
Specification

Use Cases
(Process)

Now!!!

How to become a Software Architect

• Software Developer

– Start with OOP programming skills

• Software Designer

– Add in OOD and knowledge of Design Patterns

• Software Architect

– Add in OOA and specific “Domain” knowledge

http://www.softwarearchitectures.com/career.html

http://www.softwarearchitectures.com/career.html

We’ve covered a lot of ground in a very
short time

CIS 28 (OOA & OOD) has further details

Questions?

